Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

Vijayakumar N. Sonar, ${ }^{\text {a }}$ Sean Parkin ${ }^{\text {b }}$ and Peter A. Crooks ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA, and ${ }^{\text {b }}$ Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA

Correspondence e-mail: pcrooks@uky.edu

Key indicators

Single-crystal X-ray study
$T=90 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
Disorder in main residue
R factor $=0.036$
$w R$ factor $=0.095$
Data-to-parameter ratio $=16.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
(Z)-2-[1-(4-Methylphenylsulfonyl)-1 H-indol-3-ylmethylene]-1-azabicyclo[2.2.2]-octan-3-one

In the title compound, $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$, the indole ring system is planar and makes a dihedral angle with the 4-methylbenzene ring of $83.37(3)^{\circ}$. The double bond connecting the azabicyclic and indole groups adopts a Z geometry. The H atoms of the 4 methyl group are disordered.

Comment

A single isomer of the title compound, (I), was prepared by base-catalysed condensation, as part of our continuing work on the structure and conformation of biologically active indole analogues (Sonar et al., 2004). In order to confirm the doublebond geometry of this compound, its X-ray crystal structure determination has been carried out.

(I)

The molecular structure and atom-numbering scheme of (I) are shown in Fig. 1. Selected geometric parameters are presented in Table 1. The indole ring system is planar with bond distances and angles comparable with those previously reported for other indole derivatives (Mason et al., 2003). The angles around the S atom are distorted from the ideal tetrahedral values (Table 1), with largest deviations found for $\mathrm{O} 2-$ $\mathrm{S} 1-\mathrm{O} 1, \mathrm{O} 2-\mathrm{S} 1-\mathrm{N} 1$, and $\mathrm{O} 1-\mathrm{S} 1-\mathrm{N}$. This observation is in agreement with previously reported values for the sulfonyl group, and is due to the repulsive interaction between the short $\mathrm{S}=\mathrm{O}$ bonds (Seshadri et al., 2002). The $\mathrm{S}-\mathrm{O}, \mathrm{S}-\mathrm{C}$, and $\mathrm{S}-\mathrm{N}$ distances are comparable with those found in N phenylsulfonamides (Gomes et al., 1993). The conformation of the 4-methylbenzenesulfonyl group with respect to the indole ring system is described by the torsion angles $\mathrm{O} 1-\mathrm{S} 1-\mathrm{N} 1-$ $\mathrm{C} 2, \mathrm{O} 2-\mathrm{S} 1-\mathrm{N} 1-\mathrm{C} 9$ and $\mathrm{N} 1-\mathrm{S} 1-\mathrm{C} 19-\mathrm{C} 20$ (Table 1). The 4-methylbenzene ring linked to the sulfonyl group is orthogonal to the indole ring system, forming a dihedral angle of 83.37 (3) ${ }^{\circ}$.

In the molecule of (I), the $\mathrm{C} 11-\mathrm{C} 18$ bond is in a trans disposition with respect to the $\mathrm{C} 3-\mathrm{C} 10$ bond. The double bond has a nearly planar arrangement. Deviations from ideal

Received 5 January 2006
Accepted 10 January 2006

Figure 1
The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
geometry are observed in the bond angles around atoms C3, C 10 and C 11 . The bond angles $\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 10, \mathrm{C} 3-\mathrm{C} 10-\mathrm{C} 11$, and $\mathrm{N} 12-\mathrm{C} 11-\mathrm{C} 18$ are distorted because of the strain induced by the double-bond linkage at $\mathrm{C} 10-\mathrm{C} 11$. Within the azabicyclic system, very small distortions are observed. The small $\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 10-\mathrm{C} 11$ torsion angle indicates that there is only a small deviation of the indole ring system from the plane of the double bond connected to the azabicyclic system. The $\mathrm{C} 3-\mathrm{C} 10$ bond length, when compared with the standard value for a single bond connecting a C_{ar} atom to a Csp^{2} atom [1.470 (15) Å; Allen et al., 1987], suggests a weak conjugation, beginning at atom O 18 and extending through to the aromatic ring, which is also evident from the bond lengths $\mathrm{C} 11-\mathrm{C} 18$ and $\mathrm{C} 18-\mathrm{O} 18$.

Experimental

Compound (I) was prepared by base-catalyzed condensation following the method described previously for the benzenesulfonyl analogue (Sonar et al., 2004), but utilizing 1-(4-methylbenzene-sulfonyl)-1 H -indole-3-carboxaldehyde instead of 1-benzenesulfonyl$1 H$-indole-3-carboxaldehyde. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.94(t d, 4 \mathrm{H}), 2.24$ $(s, 3 \mathrm{H}), 2.54(p, 1 \mathrm{H}), 2.84-2.93(\mathrm{~m}, 2 \mathrm{H}), 3.08-3.17(\mathrm{~m}, 2 \mathrm{H}), 7.13(\mathrm{~s}$, $2 \mathrm{H}), 7.16(d, 2 \mathrm{H}), 7.18-7.26(m, 1 \mathrm{H}), 7.63 d, 1 \mathrm{H}), 7.69(d, 2 \mathrm{H}), 7.86(d$, $1 \mathrm{H}), 8.58(s, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 22.0,26.4,40.7,47.5,113.7$, $115.1,115.9,119.4,123.9,125.2,127.0,130.1,130.5,130.6,134.5,135.1$, 144.8, 145.4, 205.3.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S} \\
& M_{r}=406.49 \\
& \text { Triclinic, } P \overline{1} \\
& a=7.9050(1) \AA \\
& b=10.6596(2) \AA \\
& c=12.2642(2) \AA \\
& \alpha=93.2146(7)^{\circ} \\
& \beta=101.1313(8)^{\circ} \\
& \gamma=107.3499(7)^{\circ} \\
& V=960.70(3) \AA^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.405 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 4384 \\
& \quad \text { reflections } \\
& \theta=1.0-27.5^{\circ} \\
& \mu=0.20 \mathrm{~mm}^{-1} \\
& T=90.0(2) \mathrm{K} \\
& \text { Block, yellow } \\
& 0.25 \times 0.25 \times 0.20 \mathrm{~mm}
\end{aligned}
$$

Data collection

Nonius KappaCCD diffractometer ω scans at fixed $\chi=55^{\circ}$
Absorption correction: multi-scan (SCALEPACK; Otwinowski \& Minor, 1997)
$T_{\text {min }}=0.952, T_{\text {max }}=0.962$
8764 measured reflections

4419 independent reflections
3686 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.022$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-10 \rightarrow 10$
$k=-13 \rightarrow 13$
$l=-15 \rightarrow 15$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0436 P)^{2}\right. \\
& \quad+0.4054 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.010 \\
& \Delta \rho_{\max }=0.29 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.48 \mathrm{e}^{-3} \AA^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\AA{ }^{\circ}{ }^{\circ}$).

N1-C2	$1.3965(17)$	$\mathrm{C} 10-\mathrm{C} 11$	$1.3388(19)$
$\mathrm{N} 1-\mathrm{S} 1$	$1.6646(11)$	$\mathrm{C} 11-\mathrm{C} 18$	$1.4901(18)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.3643(19)$	$\mathrm{O} 18-\mathrm{C} 18$	$1.2204(16)$
$\mathrm{C} 3-\mathrm{C} 10$	$1.4474(19)$	$\mathrm{S} 1-\mathrm{O} 1$	$1.4276(10)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 10$	$128.47(12)$	$\mathrm{O} 1-\mathrm{S} 1-\mathrm{N} 1$	$106.10(6)$
$\mathrm{C} 10-\mathrm{C} 3-\mathrm{C} 4$	$124.39(12)$	$\mathrm{O} 2-\mathrm{S} 1-\mathrm{N} 1$	$105.82(6)$
$\mathrm{C} 11-\mathrm{C} 10-\mathrm{C} 3$	$128.49(13)$	$\mathrm{N} 1-\mathrm{S} 1-\mathrm{C} 19$	$105.73(6)$
$\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 18$	$122.02(12)$	$\mathrm{O} 18-\mathrm{C} 18-\mathrm{C} 11$	$125.05(13)$
$\mathrm{N} 12-\mathrm{C} 11-\mathrm{C} 18$	$113.82(11)$	$\mathrm{C} 11-\mathrm{C} 18-\mathrm{C} 15$	$110.24(11)$
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{O} 2$	$121.41(6)$		
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 10-\mathrm{C} 11$	$5.6(2)$	$\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 18-\mathrm{O} 18$	$-6.9(2)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{S} 1-\mathrm{O} 1$	$-162.15(11)$	$\mathrm{N} 1-\mathrm{S} 1-\mathrm{C} 19-\mathrm{C} 20$	$-91.68(12)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{S} 1-\mathrm{O} 2$	$-31.94(13)$		

All H atoms were located in difference Fourier syntheses and were subsequently positioned geometrically and refined with a riding model. Bond distances to parent atoms were set at $0.95\left(\mathrm{C}_{\mathrm{ar}}-\mathrm{H}\right), 0.98$ $\left(\mathrm{C}_{\mathrm{Me}}-\mathrm{H}\right), 0.99\left(\mathrm{C}_{\text {sec }}-\mathrm{H}\right)$, and $1.00 \AA\left(\mathrm{C}_{\text {tert }}-\mathrm{H}\right)$ and $U_{\text {iso }}(\mathrm{H})=1.2$ or 1.5 times $U_{\text {eq }}(\mathrm{C})$. The methyl H atoms were disordered over two sites using a riding model defined by the command AFIX 127 in SHELXL97 (Sheldrick, 1997).

Data collection: COLLECT (Nonius, 1999); cell refinement: SCALEPACK (Otwinowski \& Minor, 1997); data reduction: DENZO-SMN (Otwinowski \& Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: $X P$ in SHELXTL (Sheldrick, 1995); software used to prepare material for publication: SHELXL97 and local procedures.

This investigation was supported by the National Institute of Alcohol Abuse and Alcoholism (grant No. AA12600).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Gomes, A. C., Biswas, G., Biswas, S., Biswas, G. K., Iitaka, Y. \& Bannerji, A. (1993). J. Crystallogr. Spectrosc. Res. 23, 513-517.

Mason, M. R., Barnard, T. S., Segla, M. F., Xie, B. \& Kirschbaum, K. (2003). J. Chem. Crystallogr. 33, 531-540.
Nonius (1999). COLLECT. Nonius, BV, Delft, The Netherlands.

organic papers

Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Seshadri, P. R., Velmurugan, D., Govindaraj, J., Kannadasan, S., Srinivasan, P. C., Shanmuga Sundara Raj, S., Fun, H.-K. \& Kim, M. J. (2002). Acta Cryst. C58, o700-o703.

Sheldrick (1995). XP in SHELXTL/PC. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany
Sonar, V. N., Parkin, S. \& Crooks, P. A. (2004). Acta Cryst. C60, o659o661.

[^0]: © 2006 International Union of Crystallography All rights reserved

